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1. Introduction. Construction of models using a minimum number of hypo-
theses 1s one of the major problems of the general theory of models of con-
tinuous media. Varilational prineciple

8\ Adr+ow +owr=0 (1)
v

formulated in [1 and 2], can be utilized for that purpose and construction
of the mogil can be reduced to cobtaining the Lagrangian A and the func-
tional & .

We shall consider, within the framework of the special theory of relativ-
ity continuous media, for which the Lagrangian A 1s dependent on (*)
[')Illi_ i
525 =2Zp

Here x! are the coordinates in the fixed observer system which 1is, gene-
rally, curvilinear, €& are the coordinates in the moving coordinate system,
functions x!{g?) define the transition from the moving to the observer's
coordinate system and give the law of motion of the medium, uA are the
field functions, scalar S 1s the entropy measured by the observer in his
system and referred to the unit rest mass, K are the components of some
given tensors in the observer's system which are not subject to variation

nd  ["C are the corresponding magnitudes 1ln the moving coordinate system
{**).  Components K¢ and [°C represent here elther physical constants,
or their generalizations. Covariant derivative v, 1s, by definitlom, taken
in the observer's system.

Dependence of A on the arguments zt, x’p,HA, Vj P«A and K(J was discussed
by Sedov in [1]. The same problem with o&W*= O was treated within the frame-
work of the general theory of relativity in [3]. In the present paper we
study the relationships which may be of use in determining the functional &w*,

T, wA vt vpd s, kG LTC )

*) 1Indices 1,f,k,... assume the values 1, 2, 3 and 4. Indices 4, B and C
may correspond to one or several tensor 1indices. Indices a, B, Y,... assume
the values 1, 2, 3 and 4 and correspond to spatial coordinates.

**) Here and in the following denotes the moving coordinate system,
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2. Dasioc equations. By definition, we shall assume (*)

s+ — { 10885 — Q89 — @ 480 dv
v
— (108214 @7'621; + @ 4 b Q76 (v ) w45 (3)
pH

Here the scalar p 1s the density of the rest mass, while 8, Q;, Q, Qi,
oL QAl and QAJl are some arbitrary functions or functionals.

Performing the variation in (1), we find

§W = S{Pil&ci + Pt 4+ P lout + P '8 (7 pu)) n do
pH

where
Pi=vpt 6Va:m + anVAkHA 0,V Vi + stvkvip‘A) -
- xj“ ava;:‘zs (6ilvk"js - 6k7\7ixsl) -V {vip‘A é—v—j%l—p‘; B —;— [zl’ ag‘;si -
+al, ava;:is]} — A8+ Q/ :.P(A)Jt: +Q/
pl= "% [xls 5§§:x‘s +at, 3—5*—1;2]%‘ + Q' = PpJi+ Q"
Pj= —5;78—?117 + 9, 6—\7—?—1}1—,” Qi =Puya +Q4
PAﬂ = rv%%lﬁ * QAjl = P(A)Ajl + QAjl (4)
P(M,ij, Pl(A)ijl» P(A)Aj and P(A)Aﬂ denote parts of the tensors Pij, Pijl, PAj

and P,  which can be determlned provided the Lagrangian A 1s given.

Tensor P,! shall, after its determination, be called the energy impulse
tensor.

Variational principle (1) also ylelds the system

VP = Q; )
oA oA oA
—_— T, —— e L N, 6
R A o (©)
aA

which, together with equations of state (4), fully describe the behavior of
the continuous medium. In particular, (5) to (7) contain the equation of
entropy, which can be written [5 to 7] as follows:

DS = V, Hk 4 0, D = ukv, (8)

where u* 1s the 4-velocity vector, while the vector H* together with the
scalar ¢ satisfy

Hku, = 0, 60 9)

*%1Vector sx! in (3) 1is a varilation of world lines (see [1 to 3] for vari-
ations).
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Let us find the right-hand side of (8) in the model constructed on the
basis of the variational principle. To do this, we shall use equation of
the heat influx [1, 4, 5, 6 and 7], which can be written as

2’V Pay == Qs (10)
Inserting into (10) Expression for P<A)’i from (%) and taking into account

aA A oA A oA i
Zg v A= -—a J 7:4'7 + k 4V ka 8 ap.A x 4Vip’ +5vJMA xIAViVjMA +
oA oA oL"C
C i
+ovvp’A3—'4v¢V Vkll +3S x4VS+aKC VK +8LAC 9Ed
azy oz’

2 V= A, = o oF
3JSVjvkxid o xj4Vij$i,, + V,-:vla (élivkxjs - akjleis): Vk (xjsv]xi4 - xj'tv_;zis) =

we obtaln

i i, A i __ o OA aL"C
pBz VS = ij 5]?6 z VK" + —=¢ oL € iz + Q= 4+ QAE 4V1P' (11)
where
oA A 1 r oA
F“—xtx + (”AVz — 8, 1‘4V-‘5)— AV, [1‘1
at, e g, Yk Y™ v e,
;i OA ] 1 [ oA i OA i
] ! j i
T v T2 v, T av,zflvl“ (12)
Using (*)
— i ~ l
Fo= Vg u-i, £ U= gt @

to replace the x4 vector in (11) with the 4-velocity vector u!, we obtain
in final form of (11)

1 1 . A 1 aA 8L"C
pDS:——[-——A—V.FJ—{——,DKC—{— = 5.7 + Q' + Q gDpt ] (13)
e g e 9K® Ve u ¢ ot 4

which shows, that the entropy change 1s the result of not only the work done
by generallzed forces Qi and QA , but also of action of energy sources
defined by the Lagranglan A . From (13) it follows also, that the entropy
of a particle will vary, if its physical or geometrical characteristlics K
and ["C vary with time.

Equation (13) can be riduced to (8), if additional hypotheses based on
the physical sense of , @ and A , are introduced.

3. Nodels defined by the given Lagrangian A . Let us consider the
models, for which generalized forces Q; and Q4 are equal to zero. Equation
of entropy balance has, for such models, the form

(14)

pDS =

c 1 0A 9L"C
CDK +

1
Vﬁ Jr -
[Vg 44 0K Vg 44 oL"C¢ o8

It should be noted, that the vector F! 1is independent of fileld functions
and their derivatives, provided that A has the form

*) Here g,, denote components of the metric tensor in the observer's system.
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AVE, et KC, 1O+ A® @A, Tpd, VI pd) 14)

Here A and A® are the Lagrangians of matter and field respectively.

In particular, the above situation occurs in case of electromagnetic
field in neutral medium. We shall show, that in the number of cases the
right-hand side of (14) becomes equal to zero.

1) We have an ideal compressible fluid without the thermal conductivity:
A= A(p, S) , while § 1is in terms of the absolute temperature T .

By the definition of density p [8 and 3], we have

O _ 9 0T pe BN S "’,"f_rﬂ:__mkii_i
6:;"s a'rqu dxi, 2 t?.'::is i 9z

where vp," = gpg" — up u;". Consequently
9p

)
az*

a'y=—py{ (15)

8
which we use to find

OA dp ; JA
Fl= e B 5—{—27 z'e=—p Fry 18y =0
Thus, for the ideal compressible fluid (when Q=Q, = 0), Equation (1#)
becomes
pDS =0 (16)

i1.e. the entropy of each particle is conserved.

2) Isotropic elastic medium: A = A (P, y*PL S), yhere [1, 3 and 8]
°P? is a tensor characterizing spatial distances in the initial state.
definition [ 3], dy°P?/ 8 =

Let us find the vector F‘

6A37pq-- aA . s Lomo g
3 1‘]39614'—‘ 8—_A - [(Tu')'ny -+ ')'inTz7)~’” b (1] 24=0
s Y rq

We see, that (16) is also fulfilled in this case.

Let us now consider a model, the Lagrangian A of which depends on the
arguments ~ ~ A
g po PO YV P

Using Formulas given in [3] we obta%g the derivatives of the above argu-
ments with respect to x!, and v,x!,
~ oA
)u ]\_. = Dp

oV 5P

Fj
ay” ra Oz

u

ns ON A g N
i ) pgtad P
F 2w g —}-(u 90 P

dg
If A depends only on the traces

Dp=u"*7"p, g PV ) (V" gp)
then it 1s easy to see, that Fi= 0

In. the above cases the equality DS =0 continues to hold also when the
arguments of A 1inzlude “ V H and VV”L

The right-hand side of (14) is not always equal to zero. Suppose for
example, that A depends on the vector n"* which 1s not subject to varia-
tion, dependence being given by the trace D,p = n+~k¥ V~,.p. We assume for
simplicity, that dn~k/oEt = 0, a §* we shall choose 2* to be the length of
arc of the world line. Then

*) Here we use the metric in the space-time manifold with the {(— — — +) sign
convention,
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ns LI {/ 0N b\ pen +0
pilSy = 5 g o Ppiatt |5
(5] ® \dl)np )

In general, when a model determinable by the gilven Lagranglian A 1s con-
structed, we must, in accordance with the physical sense of the model, sepa-
rate out the appearance of entropy ¢ and choose A 80, as to satlsfy the
inequality a4 2 O |

Nodel of visoous, heat oconduoting fluid. As an example, we shall formu-
late the variational principle for the model of viscous, heat conducting
fluid in the general case of a nonsymmetric energy impulse tensor. Here the
Lagrangian A depends not only on the density p and entropy S , but also
on the antisymmetric tensor of angular veloclity Q, (by definition, Qa§
describe the mean angular velocity of particles in the intrinsic coordinate
system, and Q,; =0) . We shall also introduce the tensor w,,; through the
relation 0Q,,= Dw,,, with w,, taking the part played by p4 "in the general
formalism, and subject 1t to variations. In particular, when

A=— pU (Pv ‘S:') + PU,-, U-,«: lldlijkl Qiijl’

where U, 1s the macroscoplc energy of the internal rotational motion of
particles and i/k! is the moment of inertia tensor, we find, that the part
of the energy impulse tensor deflned by the Lagranglan A , has the form
P(A'irl = —py 4 (pU +pU,) u'u'.

unctional &W* shall be given 1n the form

. 1 ‘s f
SwW* = g {PT&S — Qiéx‘ - H”ﬁwij} dt — g Qi’(Szlnjdcs
14 5

Equations of motion (5) yield ViPi' = Qi+ ViQi’. The requirement that
the divergence of the energy impulse tensor brcomes zero, gives Qi::——V7}Qiﬂ
Euler equations for w,, represent the equations of the balance of the inter-
nal angular momentum pDMV 4+ HY =0 (here MY =1/p(0A/0Q;) 1is the ten-
sor of internal angular momentum). Tensor X!! arises from the lack of sym-
metry of the enegry impulse tensor and from the lnternal and mass moments.
We shall assume the latter to be equal to zero and put fii — pit __ pii,

Uti1lizing the obtained relationships, we can write the equation of entropy
balance . . -
pTDS = — ui\7;Qy + /oH G (17)

Let us now make the cholce of moving coordinate system more specific. We
know [9], that in the investigation of irreversible processes velocity field
and the corresponding moving coordinate system can be 1introduced in two dif-
ferent ways, namely, a system can be chosen wich 1s asspcliated with the
medium, or assoclated with the mass. We shall consider the moving system
associated with the medium, hence the 4-velocity vector wu' entering (17) 1s
the 4-velocity vector of the medium (*)

For any tensor of the 2nd rank and in particular for the tensor Q,!, we

can write .. . . Lo ..
QY = s¥ Wil 4 G 4 Quid! (18)

*) In the theory of relativity we can, generally speaklng, consider two
different 4-velocity vectors 1n describing the motion of continuous medium.
These are the kinematic 4-velocity vector defining veloclty of the medium
and obtalned by averaging the microscopic motion, and the dynamic j-velocity
vector which defines the mass velocity and 1s the intrinsic vector of the
energy impulse tensor. Corresponding theorles which use in constructi the
energy impulse tensor elther one or the other velocity fileld, diverge (in
particular, determination of isotropy of contlnuous medium has different
meaninga). Expression for the symmetric energy impulse tensor of viscous
fluid obtained using the concept of dynamic 4-velocity, 1s given in [10],
while the symmetric energy impulse tensor of vlscous heat conducting fluid
in the system moving with the fluild, was investigated in [5]. Here we present
a generalization to the case of an asymmetric energy impulse tensor,
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ot = T;;T;}Qh , = TZ)“]:Q kl’ o= .{ktu!le' Q= ukusz (19)
and, by (19}, Equation {18) will be an identity. From (19) it follows, that
i . . L )
ust = us = u,l’ =u,G'=0 (20)

Putting (18) into (17) and taking (20) into account, we obtain
oDS = T [s1(7 u, — Qi) — VI’ + G'Duy —7;(Qu)]
By the previous assumption, processes are reversible when ¢,'= 0, con~
sequently the appearance of entropy © can be separated out as follows:
pDS = — V; (I*1) + o
. 1 I . 1 ,
6=DI7 T 4 T7 (s + GW)Vju— Qi) — T V;(Qw)
For the following discusslion we shall assume that ¢ = O .

We can consider the independent thermogynamic flows sty, I¥ and @' to
be the functions of thermodynamic forces v,7°%, v,u, and {y; . The model
of viscous, heat conducting fluid, is obtained under the assumptlon of linear
realtionship existing between st!, IV, ¢' and v,T7%, Yyuy, Oy, o1

(21)

=A%y, 17 4 B (Gt @), T + GWl)= AVRG T+ AT 0, 4 Qu)
vector @' can be found from the last equation by contraction with u?

TG = u (ARG, T7 4 ARG — Q)

Phenomenologlcal coefficlents A, AUk, Bikl angq AYKY cnaracterize proper-
ties of the medium and should possess 1ts symmetry properties. Continuous
medium may exhibit the symmetry of one of the crystallographic groups.
General form of three-dimensional tensors invariant with respect to crystal-
lographic groups, was obtalned in [11]. Below, we shall conslder the 1so-
tropic medium for which

A = 1t dE AT = U kRl kay®ut - kquiudul
B = pyu® 4 par 4 par™ud - panlutul
AL vl,rij,rkl + Vz"fik’l'jl + Vs'l’“'l’jk + vM,1'Lug'ulc + Vs‘rijukul +
+ veyltutuf - V?’}’jkuiu! L veyRulul 4- vigubulufut (22)
Quantities 2,, %,, %,,... represent scalar functlons of the system of
arguments (2) ana their derivatives. Some of them become, by virtue of the
relationships w(s¥ 4+ Gy =0 and u;/7 = 0, equal to zero
Ly=ky = ky = g = Py = Vg = v = Vg = Vo =0

Coefficients u,, wvs and y, will also not be significant, since the trace
of wulvyu' gives zero. Also 1% can be shown, that the inequality ¢ 2 O
imposes the following restrictions on the coefficents [, ky, kg, iy Vi Var V3
and v,

k=0, vy+vs>20, v,—v2>0, Vit (vat+ v /320
v <0, L <0, (ky + p)? < dvey

In conclusion, let us write the implicit expressions for the vlscous stress
1t;:ensoclr;-x 813, for the vector of heat flow I and for the vector of angular momen-
um
T * - - e - : s ’ - + .
51 = (07 7870y (G — 2em) YT 4 E YR — Q) — YT, ut i)
where

M= DT @t >0, L=T0 b (vt v /3120, E= @Iy — v)>0

When £ = 0 , we obtain the symmetric viscous stress tensor. For vectors
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I' and G' we have
I = xyikQ, T+ paDud, xz= 4] T2
Gl = nyk VT + Tv,Dul, o=k /T

The equallty u,;= xy 1s the relatlivistic analog of Onsager relatlionships.

If the tensor @'’ 1is symmetric, then I's= G’, hence x = y; and u;= Jys.
Then, for u;= %, we have

P= G =%(y"V,T 4 Dul)
which coincides with the known expression given in [5].

The author sincerely thanks L.I. Sedov, under whose guldance thils work
was completed.
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