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1, Iatrodu0t1on. Construction of models using a minimum number of hypo- 
theses is one of the major problems of the general theory of models of con- 
tinuous media. Variational principle 

+dT+6W+6W*-O (1) 
+ 

formulated In [l and 23, can be utilized for that purpose and construction 
of the model can be reduced to obtaining the Lagrangian A and the func- 
tional al@ . 

lie shall consider, within the framework,of the special theory of relativ- 
ity continuous media, for which the Lagrangian A is dependent on (*I 

Here xi are the coordinates in the fixed observer system which Is, gene- 
qp are the coordinates In the moving coordinate system, 

define the transition from the moving to the observer's 
coordinate system and give the law of motion of the medium, pA are the 
field functions, scalar S Is the entropy measured by the observer in his 
system and referred to the unit rest mass, ~~ are the components of some 
given tensors In the observer's system which are not subject to variation 
and I,Tc are the corresponding magnitudes In the moving coordinate system 
(**I. Components ~~ and "C represent here either physical constants, 
or their generalizations. Ckrariant derivative Q, is, by definition, taken 
in the observer's system. 

Dependence of A on the arguments Xi, Xip.pA, Vjp 
A \ 

and K" was discussed 
by Sedov In [l]. The same problem with bfl= 0 was treated within the frame- 
work of the general. theory of relativity in [3]. In the present paper we 
study the relationships which maybeofuse In determining the functional 6p. 

*) Indices t,J,k,... assume the values 1, 2, 3 anid:cesIntic;s Y;:,f zt& 
may correspond to one or several tensor indices. 
the values 1, 2, 3 and 4 and correspond to spatial coordinat&.' 

**) Here and in the following denotes the moving coordinate system. 
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2. ario l quatlonm. By definition, we shall assume ("1 

F: 

Here the scalar 1s the density of the rest mass, while 8, Qi, QAq Qi't 
Qij', QA’ and QA jl k-e some arbitrary functions or functlonals. 

Performing tht variation In (l), we find 

where 

(4) 

P (h)ijl p (h)i 
and P,jl, 

"9 P(h)Ai and P(^)A3' denote parts of the tensors Pij, Pii', PAi 
which can be determined provided the Lagranglan h Is given. 

Tensor P,J shall, after Its determination, be called the energy Impulse 
tensor. 

Variational principle (1) also yields the system 

ah 
as =- PQ (7) 

which, together with equations of state (41, fully describe the behavior of 
the continuous medium. In particular, (5) to (7) contain the equation of 
entropy, which can be written [5 to 71 as follows: 

PDS = VI, HS + G, D = ukV,< (8) 
where uk Is the 4-velocity vector, while the vector Hk together with the 
scalar 0 satisfy 

Hku,; = 0, 030 (9) 

6x* In (3) Is a var$atlon of world lines (see [l to 31 for varl- 
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Let us find the right-hand side of (8) In the 
basis of the variational principle. To do this, 
the heat Influx [l, 4, 5, 6 and 73, which can be 

z~'v~P(,): =zdtQi 

model constructed on the 
we shall use equation of 
written as 

Inserting Into (10) Expression for P& from (4) and taking Into account 

aA an . 
x&h = a,i x’pVixis + 1 1 

avlcx 8 
&V&x 8 

we obtain 

aA aLhc p@xi4ViS = VjFi + $ xi4ViKC + zc agP f QiXi4 + QAXi4ViCLA (11) 

where 

. . 
F1 aA = 2 &x7, aA (x~~v~x’~ -I- -- - 6kjxz4vix1s) - + xipv, 

I) av,x 8 
. an 1 

+ “8 f 1 +2 1 x 1 

ah 
7 +x38 an 1 a VIX s vp’4 8 av,x 7- 

s av,x Fd 
(12) 

using (“1 
$4 z 

i gh14 * 2, g A 44 = gI,x14xm4 

to replace the ~1 vector In (11) with the 4-velocity vector IA', we obtain 
In final form of 111) 

pDS = $ ah aLAc --VjFi+$ DKC+-------- 
aL^C w + Qiu’ + QADpA 

1 
(13) 

which shows, that the entropy change Is the result of not only the work done 
by generalized forces Qi and QA , but also of action of energy sources 
defined by the Lagranglan A . From (13) It follows also, that the entropy 
of a particle will vary, If Its physical or geometrical characteristics KC 
and L-C vary with time. 

Equation (13) can be r duced.to (8), If additional hypotheses based on 
the physical sense of P 1 ,~c,~^c, 8 and n , are Introduced. 

3. Wodolr drflmd w tha (lV@n Lagmngiur A . Let us consider the 
models, for which generalized forces Qi and QA are equal to zero. Equation 
of entropy balance has, for such models, the form 

It should be noted, that the vector FJ Is Independent of field functions 
and their derivatives, provided that A has the form 

“1 Here Q,, denote components of the metric tensor In the observer's system. 
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Here A(n and AC2) are the Lagranglans of matter and field respectively. 

In particular, the above situation occurs In case of electromagnetic 
field In neutral medium. We shall show, that In the number of cases the 
right-hand side of (14) becomes equal to zero. 

1) We have an Ideal compressible fluid without the thermal conductivity: 
A = Alp, S) , while e is in terms of the absolute temperature T . 

By the definition of density p [8 and 33, we have 

where ypq^ = g,,^ - uP”uQn. Consequently 

ap 
axis 

zjs =-py{ 

which we use to find 

(15) 

Thus, for the Ideal compressible fluid (when Qi =QA = 01, Equation (14) 
becomes 

pDS = 0 0’3 

I.e. the entropy of each particle Is conserved. 

2) Isotropic elastic medium: A = A (ropQ, Y^"~;S), where [I, 3 and 83 
@Q Is a tensor characterizing apatlal distances In the Initial state. Uy 

dzflnltlon [3], eOrQ / aE4 = 0. 

Let us find the vector FJ 

We see, that (16) Is also fulfilled In this case. 

Let us now consider a model, the Lagranglan A of which depends on the 
arguments n 

g",,, uAr. PY v kP 

Using Formulas given In [3] we obta 1) the derivatives of the above argu- 
ments with respect to x1, and vtxi, t, 

If h depends only on the traces 

Dp= u n kfkp’ gAPq(v ^,P)M,P) 

then it is easy to see, that FJ- 0 . 

In.the above cases the e2uallty Ds = 0 continues to hold also when the 
arguments of A Include p , vipA, and ViVjPA. 

The right-hand side of (14) Is not always equal to zero. Suppose for 
example, that A depends on the vector n^' which 18 not subject to varla- 
tlon, dependence being given by the trace D,p = n”k Vakp. We assume for 
simplicity, that an-klaE4 = 0, a E4 we shall choose 5* to be the length of 
arc of the world line. Then 

ereweuae the metric In the space-time manifold with the (- - - +) sign 
. 
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In general, when a model determinable by the given Lagranglan A Is con- 
structed, we must, In accordance with the physical sense of the model, sepa- 
rate out the appearance of entropy 6 and choose A so, as to satisfy the 
inequality fl r 0 . 

lbd01 of V~#OOW, heat oonduotlag fluid. As sn example, we shall formu- 
late the varlatlvnal principle for the model of vlscoua, heat conducting 
fluid In the general case of a nonsymmetrlc energy Impulse tensor. Here the 
Lagranglan A depends not only on the density p and entropy S , but also 
on the antlsynrmetrlc tensor of angular velocity fl, c (by definition, QaE 
describe the mean angular velocity of.partlcles In he Intrinsic coordinate 
system, and Q,;=O). We shall also Introduce the tensor UJ,, through the 
relation R,,- DuJ,,, with UJ,, taking the part played by 14~ In the general 
formalism, and subject It to variations. In particular, when 

A = - PU (P, S) + PU,, UT= ‘/4Ziik1 gijQkZ, 

where II, Is the macroscopic energy of the Internal rotational motion of 
particles and lijkl Is the moment of Inertia tensor, we find, that the part 
of the energy Impulse tensor, defined by the Lagranglan A , has the form 

-PP + (PU +Pu,) uZu'. 
6w* shall be given In the form 

6W* = 1 {pT&S - QiSZi - !j Ilij6tiii) dt y \ Qi’62injd~ 

Equations of motion (5) yield vjpi3 z Qi+ViQi’. The requirement that 
the divergence of the energy Impulse tensor brcomes zero, gives Qi=-ViQi’* 
Euler equations for UI,, represent the equations of the balance of the lnter- 
nal angular momentum pDM23+ H”J=O (here Ma1 =i/ p(aa/aQij) Is the ten- 
sor of Internal angular momentum). Tensor II'J arises from the lack of sym- 
metry of the enegry Impulse tensor and from the Internal "d maas mo,?entS. 
We shall assume the latter to be equal to zero and put H23 =pJa-pp23. 

Utilizing the obtained relationships, we can write the equation of entropy 
balance 

pTDS = - uiViQii + ‘/zHih2ij (17) 

Let US now make the choice of moving coordinate System more Specific. We 
know [g], that In the Investigation of Irreversible processes VelocltY field 
and the corresponding moving coordinate system can be Introduced In two dlf- 
ferent ways, namely, a system can be chosen wlch Is asspclated with the 
medium, or associated with the mass. We shall consider the moving system 
associated with the medium, hence the 4-velocity Vector ui entering (17) Is 
the 4-velocity vector of the medium (") 

For any tensor of the 2nd rank and In particular for the tensor Q,', we 
can write- 

Qij _ gi _I_ uiZl $ &j + Quiui (18) 

*I In the theory of relativity we can, generally speaking, consider two 
different 4-velocity vectors in describing the motion of continuous medium. 
These are the kinematic 4-velocity vector defining velocity of the medium 
and obtained by averaging the microscopic motion, and the dynamic 4-velocity 
vector which defines the mass velocity and Is the Intrinsic vector of the 
energy Impulse tensor. Corresponding theories which use In construct1 
energy Impulse tensor either one or the other velocity field, diverge Khe 
particular, determination of isotropy of continuous medium has different 
mean1ng.s). Expression for the symmetric energy Impulse tensor of viscous 
fluid obtained using the concept of dynamic 4-velocity, Is given In [lo], 
while the symmetric energy Impulse tensor of viscous heat conducting fluid 
In the system moving with the fluid, was Investigated In [5]. Here we present 
a generalization to the case of an asynmretrlc energy Impulse tensor. 
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sii = ~ki~~iQkz, Ii = r+kQk$ G” = rkiulQk’, Q = ukalQkf w 
and, by (151, Equation (18) will be an identity. From (19) it follows, that 

. 
u .s’J 3 = u$i =: u#i = I.& =c: 0 (~~0) 

Putting (18) Into (17) and taking (20) into account, we obtain 

PDS = T-'~s~i(~~"~-_&cj)-_~Ij+ @l)u,-_~j (QU’)] 

By th& previous assumption, processes are reversible when I?,$= 0 , con- 
sequently the appearance of entropy 0 can be separated out as follows: 

pDS = - vi (z+lfj) + u 

o = I~TJ~X-’ + X-’ (sii + Gid)(yi- !+) - X-‘vj(Qd) 

For the following dlscussion we shall assume that 0 - 0 . 

We can consider the independent,,thermo~~am~c flows SiJ, It and G* to 
be the functions of thermodynamic forces v,T1, ~~7.4, and RtJ . The model 
of viscous, heat conducting fluid, is obtained under the assumption of linear 
realtionshlp existing between s* J, IJ, G’ and vJT”, v,u,, n,, . 

(24) 

zj = ,4jkv,P + ~jkl(~~~~_t szkl), P (8 + dd) = kjk~,P + kjkl(vkuI + cakz) 

Vector G' can be found from the last equation by contraction with u1 

X-'Ci= u~(A~~'YJ~X-'+ ~i~k~(~~~~-~~~~~ 

Phenomenological coefficients Aif,Aijk, Bjkl and Aijkl characterize proper- 
ties of the medium and should possess its symmetry properties. Continuous 
medium may exhibit the symmetry of one of the crystallographic groups. 
General form of three-dimensional tensors invariant with respect to crystal- 
lographic groups, was obtained in [ll]. Below, we shall consider the iso- 
tropic medium for which 

A@ = lIy jk + lyajuk Aijk _; k .r 
. . . . . . 

&JuR + k2y1’zd + ksrha $- kou%dak 
gW = plril k ’ 24 + p‘~~s.4~ + p9p z&j + p@d UkfJ 

Aiikl = ,,,$jTkl _+ yzT~kT~~ + ,syifyjk + y4r id,juk + y5T~j,k,~ +. 

+ Ygrj*uiUk .+- yTTjk,V + y8~kl,$2 + ygri%jU[ + Y,,&~u~u~ W) 

Quantities fix, fiz, kl,... represent scalar functions of the system of 
arguments (2) and their.derivatives. Some of them become, by virtue of the 
relationships ~~($3 + G%LJ) = 0 and ujlJ = 0,equal to zero 

1, =: k, = k4 = /us = pr = vg = Y, = V8 = VI,, = 0 

Coefficients clZ, vs and will also not be significant, since the trace 
of u'vku* gives zero. Also z? can be shown, that the inequality a 2 0 
imposes the following restrictions on the coefficents I,, kl,ks,pl, Vl,Vg,Vs 
and v., 

kl = 0, va+vs>O, v,--%),O, v1+ (v2 + %) I 3 2 0 

vq < 0, 1, < 0, (k, + ~1)’ < 4”& 

In conclusion, let us write the implicit expressions for the viscous Stress 
tensor 811, for the vector of M&flaw I' and for the vector of angular momen- 
tum 0' 

sij = 7j (~~"v~~i-j-~jk';i~~~)+ (~--'/3~) +g,mk+ 4 ~lik(~,uj-~:)-yjk(~,u'_ni,)) 

where 

'1 52 (2T)4 (v 2 + vg)> 0, 5 = T-1 [VI + (v2 + VJ / 312 0, 5 = (2T)-l(v, - v&>O 

When 5 = 0, we obtain the symmetric viscous stress tensor. For vector8 
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fJ and G1 we have 

;j=~#$T-i_ l”,IDuft XElII/TZ 

Gi = xl+ VkT + Tv,Dui, x1 I k, / T 

The equality p1 = x1 is the relativistic analog of Onsager relationships. 

If the tensor Q’ 1 is symmetric, then Ii= G;‘, hence x = x1 and u, = 3v4. 
Then, for ul= X1 we have 

Ij= Gj= u($rVkT+ Duj), 

which coincides with the known expression given In [5]. 

The author sincerely thanks L.I. Sedov, under whose guidance this work 
was completed. 
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